Calculator Pe	rmitted Section **	Calculator	NOT	Permitted Section **
1. C	D	8.	Α	D
2. D	В	9.	Ε	С
3. B	Α	10.	С	\mathbf{E}
4. C	E	11.	D	Α
5. B	Α	12.	Α	D
6. B	Α	13.	Α	С
7. D	D	14.	D	Α

Calculator Permitted Free Response Part A - 2 points total

- 1 Draws the graph pictured to the right displaying approximate zeros, correct y intercept, and correct end behavior.
- 1 Since the degree of the function is 3 and the graph displays three roots, then none of the roots of g(x) are imaginary; all are real.

Calculator Permitted Free Response Part B – 2 points total

1 Possible Rational Roots: $\frac{\text{Factors of 3}}{\text{Factors of 6}} = \frac{\pm 1, \pm 3}{\pm 1, \pm 2, \pm 3, \pm 6} = \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 3, \pm \frac{3}{2}$ 1 Two Most Probable Rational Roots: $x = -\frac{1}{3}$ and $x = -\frac{1}{6}$ or $-\frac{1}{2}$

Calculator Permitted Free Response Part C - 3 points total

- 1 Correct synthetic division for $x = -\frac{1}{3}$ with a remainder of 0 1 Correct synthetic division for either $x = -\frac{1}{6}$ or $-\frac{1}{2}$ with remainders of $-\frac{17}{18}$ (-0.944) or $-\frac{1}{4}$ (-0.25)
- 1 Since the remainder was 0 when $x = -\frac{1}{3}$ but the remainder when $x = -\frac{1}{6}$ or $-\frac{1}{2}$ is not 0, then $x = -\frac{1}{3}$ is a rational root but $x = -\frac{1}{6}$ or $-\frac{1}{2}$ is not.

Calculator Permitted Free Response Part D - 2 points total

1 Applies the quadratic formula to correctly solve $6x^2 + 18x + 9 = 0$, the quadratic that remains after synthetically dividing by the root $x = -\frac{1}{3}$.

$$\frac{6x^2 + 18x + 9}{3} = \frac{0}{3} \implies 2x^2 + 6x + 3 = 0 \implies x = \frac{-6 \pm \sqrt{6^2 - 4(2)(3)}}{2(2)} = \frac{-6 \pm \sqrt{12}}{4} = \frac{-6 \pm 2\sqrt{3}}{4} = \frac{-3 \pm \sqrt{3}}{2}$$

1 Correct roots of g(x): $x = -\frac{1}{3}$, $\frac{-3+\sqrt{3}}{2}$ (or -0.634), and $\frac{-3-\sqrt{3}}{2}$ (or -2.366).

Calculator NOT Permitted Free Response Part A – 2 points total

1 Uses f(0) = 4 to show that c = 4 $f(0) = a(0)^3 - 11(0)^2 - 8(0) + c = 4$ c = 4The student may have explained that the constant in the equation represents the *y* - intercept, which is the point when x = 0. Thus, since f(0) = 4, then c = 4.

1 Uses
$$f(-1) = 4$$
 to find that $a = -3$
 $f(x) = ax^3 - 11x^2 - 8x + 4$
 $f(-1) = a(-1)^3 - 11(-1)^2 - 8(-1) + 4 = 4$
 $-a - 11 + 8 + 4 = 4$
 $a = -3$

Calculator NOT Permitted Free Response Part B – 3 points total

- $_$ 1 As $x \to -\infty$, then $f(x) \to \infty$
- $_$ 1 As $x \to \infty$, then $f(x) \to -\infty$.
- _____1 Justification: The degree of f(x) is odd and the leading coefficient is negative

Calculator NOT Permitted Free Response Part C – 2 points total

- _____1 (x+2) is a factor of f(x) twice.
- 1 Student shows that when f(x) is synthetically divided by (x + 2) twice, the remainder is zero.

Calculator NOT Permitted Free Response Part D – 2 points total

- 1 The graph has zeros at x = -2 and $x = \frac{1}{3}$ and the graph is tangent to the x – axis at x = -2 and passes through the x axis at $x = \frac{1}{3}$ without changing concavity and has a y – intercept of 4.
- 1 The graph exhibits appropriate end behavior as pictured to the right.

Test #4: Unit #3 – Analysis Polynomial Functions with Irrational and Imaginary Roots

- A. x = -1, 7B. $x = -1, \frac{-5 \pm \sqrt{3}}{2}$ C. $x = -1, \frac{-5 \pm 3i\sqrt{2}}{2}$ D. $x = -1, \frac{-5 \pm i\sqrt{3}}{2}$ F. Boots cannot be determined
- E. Roots cannot be determined
- 3. Which of the following correctly describes the number of negative roots possible of the function $h(x) = -2x^4 - 3x^3 + 2x^2 - 2x - 3 \text{ according to Descartes' Rule of Signs?}$

A. 3 or 1	B. 2 or 0	C. Only 1
D. 4, 2, or 0	E. Only 2	

TEST #4

4. A quartic function has roots of x = 1, -3, and 2*i*. What is the equation of f(x)?

A. $f(x) = x^4 - 2x^3 + x^2 - 8x - 12$ B. $f(x) = x^4 + 2x^3 - 7x^2 - 8x + 12$ C. $f(x) = x^4 + 2x^3 + x^2 + 8x - 12$ D. $f(x) = x^4 - 2x^3 - 7x^2 + 8x - 12$ E. $f(x) = x^3 - 2x + 3ix - 3$

5. Find the value of k so that the binomial (x - 3) is a factor of the function $f(x) = x^3 + kx^2 + x + 6$.

A. 2
B. -4
C. ¹²/₅
D. -2
E. None of these

6. For which of the following value(s) of k does the function $g(x) = x^4 - 4x^2 + x + k$ have four distinct real roots?

I. $k = -2$	II. $k = 1$	III. $k = 3$
A. I only	B. II only	C. I and II

- D. II and III only E. I, II, and III
- 7. The table of values below represents a cubic polynomial function, $F(x) = ax^3 + 2x^2 5x + b$, that has two negative roots and one positive root. Which of the following statements is/are true?

x	-5	-3	-2	-1	0	1	3	5
F(x)	-56	0	4	0	-6	-8	24	144

- I. The value of a > 0 and b = -6.
- II. In factored form, the equation of F(x) would contain the factor (x 3).
- III. The graph of F(x) passes through the x axis at x = -1 without changing concavity.
- A. I, II and III B. I only C. I and II only
- D. I and III only E. II and III only

only

FREE RESPONSE

FREE RESPONSE Consider the function $g(x) = 6x^3 + 20x^2 + 15x + 3$ to answer the following questions.

a.	Use the graphing calculator to sketch a graph of $g(x)$ on the axes to the right. Based on the graph, should any of the roots be imaginary? Give a reason for your answer.
b.	Make a complete list of the rational roots that are possible for $g(x)$. Then, after comparing the list to the roots indicated in the graph, choose the two most probable rational roots.
	Possible Rational Roots:
	Two Most Probable Roots:
c.	Synthetically divide $g(x)$ by both roots that you identified as probable roots in part b. What conclusion can you make from these two synthetic divisions? Give a reason for each of your conclusions.
d.	Identify all three roots of $g(x)$. Show your work using the quadratic formula.

The three roots of g(x):

Pre-AP Calculus

Test #4: Unit #3 – An Analysis of Polynomial Functions with Irrational and Imaginary Roots

MULTIPLE CHOICE – Calculator NOT Permitted Section

- 8. Which of the following statements is/are true about the quartic function, g(x), pictured to the right.
 - I.(x-2) is a factor of g(x) a total of 2 times.II.The equation of g(x) could have had 4 sign changes.III.If c is the constant term in the equation of g(x), then c < 0.A.III onlyB.II onlyC.I and III onlyD.II and III onlyE.I and III only
- 9. If x = -3 is one root of the function $f(x) = x^3 + 5x^2 + 11x + 15$, what are the other two roots?

A. x = -1 and -5B. x = 1 + 2i and x = 1 - 2iC. x = -1 + i and x = -1 - iD. x = 1 and -5E. x = -1 + 2i and x = -1 - 2i

10. The synthetic division of a polynomial function, g(x) is shown to the right. Which of the following conclusions can be made?

I. $g(x)$ is a cubic function.		2	-2	0	3	8
II. The graph of $g(x)$ is belo	we the $x - axis$ at $x = 2$.		0	-4	-8	-10
III. The graph of $g(x)$ crosse	s the y – axis at (0, 8).		-2	-4	-5	-2
A. I and III only	B. II and III only		C. I, I	II, and	ł III	
D. II only	E. III only					

- 11. Which of the following is NOT a possible rational root of $g(x) = -6x^3 + 4x^2 2x 2$
 - A. $-\frac{2}{3}$ B. $-\frac{1}{6}$ C. $\frac{1}{3}$ D. $-\frac{3}{2}$ E. -2

Graph of g(x)

12. Which of the following could be the complete chart of possible types and numbers of the roots of the function $F(x) = -2x^5 + 3x^3 + 2x^2 - x - 3$?

D.

Positive	Negative	Imaginary	B.
2	3	0	
2	1	2	
0	3	2	
0	1	4	
	Positive 2 2 0 0	PositiveNegative23210301	PositiveNegativeImaginary230212032014

Negative

3

1

Positive	Negative	Imaginary
2	3	0
2	1	2
0	3	2

Positive	Negative	Imaginary
2	2	1
2	0	3
0	2	3
0	0	5

13. Which of the following statements is/are true about the function $f(x) = 2x^3 - 4x^2 + 10x - 12$?

I. The graph will fall to the left and rise to the right.

Imaginary

0

2

II. There is a guaranteed zero on the interval 1 < x < 2.

III. One zero of the function is x = -3.

A. I and II only

,

С.

Positive

2

2

B. II and III only

 $C. \ II \ only$

- D. III only E. I, II, and III
- 14. Assuming that the function graphed below has no imaginary roots, which of the following statements is/are true about the function?
 - I. The leading coefficient of the equation is positive.

II. The graph of the function has three points of inflection.

- III. The function has two roots that are negative, one of which has a multiplicity of 2.
- A. I and III only B. III only
- D. II and III only E. I, II, and III

C. I and II only

FREE RESPONSE

Suppose that $f(x) = ax^3 - 11x^2 - 8x + c$ is such that f(0) = 4, and f(-1) = 4.

a. Based on the given function values of *f*, either show or explain why the value of a = -3 and the value of c = 4.

b. Describe the behavior of the graph of f(x) as $x \to -\infty$ and as $x \to \infty$. Justify your answer.

c. How many times is (x + 2) a factor of f(x)? Show the work that leads to your answer.

d. Sketch a possible graph of f(x), correctly labeling all intercepts and displaying correct end behavior.

-2 -1

1

2