Consider the function $f(x)=9 x^{4}+21 x^{3}+7 x^{2}+x-2$ to answer the following questions.
a. Find $f(-2.5)$ and $f(-1.5)$. What do these values suggest about the graph of $f(x)$ on the interval $-2.5<x<-1.5$?
b. Use Descartes' Rule of Signs to determine the number of possible positive, negative, zero, and imaginary roots of $f(x)$. Make a chart that summarizes your results. Then, after investigating the graph of $f(x)$, which of the combinations from the table is correct and explain why.
c. What are all of the possible rational roots of $f(x)$? Of these possible roots, which two appear to be the most likely possible roots?
d. Find the roots of $f(x)$, real and/or imaginary. Show all of your work.

Free Response Practice \#17

Calculator NOT Permitted
Pictured below are graphs of two different polynomial functions. All of the zeros of each function are real-none are imaginary. Answer the questions that follow about the two graphs, $f(x)$ and $g(x)$.

a. Based on the graphs, what types of polynomial functions are $f(x)$ and $g(x)$? Explain your reasoning.
b. What can be concluded about the value of a, if a is the leading coefficient in the equation of $g(x)$? Explain your reasoning.
c. How many points of inflection does the graph of $f(x)$ have? Give a reason for your answer.
d. If d represents the constant term in the equation of $g(x)$, what can be concluded about the value of d ? Explain your reasoning.

Free Response Practice \#18
Calculator NOT Permitted
A function, $g(x)$, has a root of $x=2 i$ and a root of $x=3$, which has a multiplicity of 2 .
a. Find an equation of $g(x)$.
b. Determine the left and right hand behavior of $g(x)$. Justify your reasoning.
c. A quartic function in the form $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ is such that the coefficients of the quadratic and linear terms are 10 and -18 , respectively. Additionally, $f(0)=9$ and $x=1$ is a root of multiplicity of 2 . What is the value of $(a+b)$?

Free Response Practice \#19

Calculator NOT Permitted

x	-3	-2	0	1	3	4
$F(x)$	50	16	-4	-2	-4	-20

The table above shows function values of a cubic polynomial function, $F(x)$. The function has two distinct zeros, $x=a$ and $x=b$, such that $a<0$ and $b>0$. Additionally, one of the zeros has a multiplicity of two.
a. Determine the left and right hand behavior of $F(x)$ based on the table of values. Give a reason for your answers.
b. What can be said about the leading coefficient of $F(x)$? Justify your reasoning
c. Between what two x-values in the table does the zero $x=a$ lie? What is its multiplicity? Justify your reasoning.
d. Between what two x-values in the table does the zero $x=b$ lie? What is its multiplicity? Justify your reasoning.

