Day #37 Homework

For problems 1 - 6, determine the equation of the horizontal asymptote of the function and give a reason. If the function does not have a horizontal asymptote, explain why it does not.

if the function does not have a nonzontal asymptote, explain why it does not.		
2. $h(x) = \frac{2x-6}{x^2 - x - 2}$	3. $p(x) = \frac{2x - 3x^2}{2x^2 - x - 3}$	
5. $f(x) = \frac{2x^2 + 8}{x^2 + 8}$	6. $P(x) = \frac{(3-2x)(x+3)}{(2+x)(3-x)}$	
-2x-8	(2+x)(3-x)	

For problems 7 and 8, find the equation of the slant asymptote of the function. If the function does not have a slant asymptote, explain why it does not.

7. $f(x) = \frac{x^2 + 5x + 8}{x + 3}$	8. $f(x) = \frac{x^2 - x + 1}{2x - 2}$

Answer questions 9 – 11 using the graph of the rational function pictured to the right. The graph of the function has a removable point discontinuity at $\left(3, \frac{5}{3}\right)$ and an *x* – intercept at $\left(-\frac{1}{3}, 0\right)$.

numerator of the equation of $f(x)$ compared to the degree of the denominator? Give a reason for your answer.	
10. In factored and standard form, what is the equation of <i>f</i> (<i>x</i>)?	
11. Give two reasons why the standard form equation context of the graph.	n you wrote in exercise 10 makes sense in the

13. The graph of the function $g(x) = \frac{x^2 - x + 3}{x - 1}$ is pictured to the right. Find the equation(s) of the asymptotes of the graph of $h(x)$ and draw them on the graph.	
14. The graph of the function $h(x) = \frac{x^2 + 3x - 2}{3x + 6}$ is pictured to the right. Find the equation(s) of the asymptotes of the graph of $h(x)$ and draw them on the graph.	