\qquad

Day \#37 Homework

For problems $1-6$, determine the equation of the horizontal asymptote of the function and give a reason. If the function does not have a horizontal asymptote, explain why it does not.

1. $f(x)=\frac{3 x^{2}+10 x+8}{x^{2}-2 x-8}$	2. $h(x)=\frac{2 x-6}{x^{2}-x-2}$	3. $p(x)=\frac{2 x-3 x^{2}}{2 x^{2}-x-3}$
4. $h(x)=\frac{-2 x^{2}-5 x-2}{2 x^{2}-7 x+3}$	5. $f(x)=\frac{2 x^{2}+8}{-2 x-8}$	6. $P(x)=\frac{(3-2 x)(x+3)}{(2+x)(3-x)}$

For problems 7 and 8 , find the equation of the slant asymptote of the function. If the function does not have a slant asymptote, explain why it does not.

7. $f(x)=\frac{x^{2}+5 x+8}{x+3}$	8. $f(x)=\frac{x^{2}-x+1}{2 x-2}$

Answer questions $9-11$ using the graph of the rational function pictured to the right. The graph of the function has a removable point discontinuity at $\left(3, \frac{5}{3}\right)$ and an x-intercept at $\left(-\frac{1}{3}, 0\right)$.
9. What can be said about the degree of the numerator of the equation of $f(x)$ compared to the degree of the denominator? Give a reason for your answer.
10. In factored and standard form, what is the equation of $f(x)$?

11. Give two reasons why the standard form equation you wrote in exercise 10 makes sense in the context of the graph.
12. The graph of the function $h(x)=\frac{x^{2}-7 x+2}{-2 x+6}$ is pictured to the right. Find the equation(s) of the asymptotes of the graph of $h(x)$ and draw them on the graph.

13. The graph of the function $g(x)=\frac{x^{2}-x+3}{}$ (
is pictured to the right. Find the equation(s)
of the asymptotes of the graph of $h(x)$ and
draw them on the graph.

