Free Response Practice \#22

Calculator NOT Permitted

Consider the rational functions $f(x)=\frac{2}{x-3}$ and $g(x)=\frac{x-2}{x^{2}-9}$ to answer the following questions.
a. At what value(s) of x will the graphs of $f(x)$ and $g(x)$ have discontinuities? Explain your reasoning.
b. If $h(x)=f(x) \cdot g(x)$, find an equation for h in standard form and then determine at what value of y will the graph of h have a horizontal asymptote? If no such value exists, state so. Give a reason for your answer.
c. On what intervals will $f(x) \geq g(x)$? Show the complete algebraic and sign analysis that leads to your answer.

Free Response Practice \#24

Calculator Permitted

The table below shows function values for a rational function, $G(x)$. The equation of $G(x)$ is such that $(x+2)$ and $(x-1)$ are the only factors in the denominator of the function.

\boldsymbol{x}	-1000	-2.001	-2	-1.999	0	0.999	1	1.001	1000
$\boldsymbol{G}(\boldsymbol{x})$	0.998	0.333	Undefined	0.333	-1	-1999	Undefined	2001	1.002

a. Does either factor in the denominator also exist in the numerator? If so, which factor? Give a reason for your answer.
b. Does either factor of the denominator not exist in the numerator? If so, which factor? Give a reason for your answer.
c. Based on the end behavior, where does $G(x)$ have a horizontal asymptote? Give a reason for your answer.
d. Sketch a possible graph of the function $G(x)$. Then, state the domain and range of $G(x)$.

Domain: \qquad
Range: \qquad

