Pre-AP Calculus

MULTIPLE CHOICE – Calculator NOT Permitted

1. Which of the following would be the equation for the circle pictured to the right?

A. $x^{2} - 4x + y^{2} + 2y - 4 = 0$ B. $x^{2} - 4x + y^{2} - 2y - 4 = 0$ C. $x^{2} + 4x + y^{2} + 2y - 4 = 0$ D. $x^{2} - 4x + y^{2} + 2y - 9 = 0$ E. $x^{2} + 4x + y^{2} - 2y - 4 = 0$

2. Which of the following equations would define the semi-circle pictured to the right?

A.
$$y = -1 - \sqrt{16 - (x+3)^2}$$

B. $x = 3 - \sqrt{16 - (y+1)^2}$
C. $y = 1 - \sqrt{16 - (x-3)^2}$
D. $x = 3 + \sqrt{16 - (y+1)^2}$
E. $x = 3 - \sqrt{16 - (y-1)^2}$

- 4. The graph of an ellipse is pictured to the right. Which of the following points is/are foci of the ellipse?
 - I. $(-2, -2+2\sqrt{3})$ II. $(-2+2\sqrt{3}, -2)$ III. $(-2-2\sqrt{3}, -2)$ A. I only B. II only C. III only D. I and II only E. II and III only
 - 5. Find the equation of an ellipse whose vertices are (1, 6) and (1, -2) and has a minor axis whose length is 6.

A.
$$\frac{(x-1)^2}{9} + \frac{(y-2)^2}{16} = 1$$

B. $\frac{(x+1)^2}{3} + \frac{(y+2)^2}{4} = 1$
C. $\frac{(x-1)^2}{6} + \frac{(y-2)^2}{8} = 1$
D. $\frac{(x+1)^2}{16} + \frac{(y+2)^2}{9} = 1$
E. $\frac{(x-1)^2}{36} + \frac{(y-2)^2}{16} = 1$

- 6. The equation of a circle is $(x + 2)^2 + (y + 3)^2 = 4$. The line y = x 1...
 - A. intersects the circle at only one point.
 - B. does not intersect the circle at any points.
 - C. intersects the circle at exactly two points and passes through the center.
 - D. intersects the circle at exactly two points and does not pass through the center.

3. An ellipse is defined by the equation $4(x + 3)^2 + 9(v - 2)^2 = 36$. Which of

- II. The co-vertices of the ellipse are (-3, 4) and (-3, 0).
- III. The major axis is horizontal and has a length of 6.
- A. I only B. II only

the following statements is/are true about the graph?

D. I and III only E. III only

C. II and III only

- 7. Find the distance from the center of the circle defined by the equation $x^2 + 6x + y^2 4y 12 = 0$ and the negative zero of the quadratic function $g(x) = 2x^2 + 7x 15$.
 - A. $2\sqrt{2}$ B. $2\sqrt{17}$ C. $2\sqrt{15}$
 - D. $\sqrt{13}$ E. 17

- 8. Which of the following equations, when graphed, is/are circles?
 - I. $2(x+3)^2 2(y+2)^2 = 1$ II. $2(x-3)^2 + (y-1)^2 = 4$ III. $x^2 + y^2 - 8x + 4y - 25 = 0$
 - A. I and II onlyB. II onlyC. II and III onlyD. I and III onlyE. III only
- 9. Which of the following is an equation of the graphed ellipse?
 - A. $\frac{x^2}{16} \frac{(y+1)^2}{9} = 1$ B. $\frac{x^2}{4} + \frac{(y+1)^2}{3} = 1$ C. $\frac{x^2}{16} + \frac{(y-1)^2}{9} = 1$ D. $\frac{x^2}{4} + \frac{(y-1)^2}{3} = 1$ E. $\frac{x^2}{16} + \frac{(y+1)^2}{9} = 1$

- 10. Which of the following equations would be the correct equation for the hyperbola pictured to the right?
 - A. $\frac{(x+3)^2}{4} + \frac{(y-1)^2}{9} = 1$ B. $\frac{(x+3)^2}{2} - \frac{(y-1)^2}{3} = 1$ C. $\frac{(x+3)^2}{4} - \frac{(y-1)^2}{9} = 1$ D. $\frac{(x-3)^2}{4} - \frac{(y+1)^2}{9} = 1$

11. Which of the following statement equation $\frac{(y+4)^2}{8} - \frac{(x-2)^2}{9} = 1?$	ents is/are true about the graph o	of the hyperbola defined by the						
I. The transverse axis of the hyperbola is the y – axis.								
II. The slopes of the asymptotes of the graph are $\pm \frac{2}{3}\sqrt{2}$.								
III. One of the vertices of the hyperbola has coordinates $(2, -4 - 2\sqrt{2})$								
A. I and III only	B. I only	C. I and II only						
D. I, II, and III	E. II only							
12. The equation $y^2 + 4x^2 = 2x $ would have a graph that displayed which of the following types of symmetry?								
I. $x - axis$	II. $y - axis$	III. origin						
A. I and II only	B. I, II and III	C. I only						
D. II only	E. III only							
	Free Response							
Given below are three implicitly def questions that follow.	fined equations whose graphs re	present conic sections. Answer the						

Equation I	Equation II	Equation III
$4y^2 - x^2 + 8y - 4x - 4 = 0$	$2x^2 + 4x + 2y^2 - 16y - 16 = 0$	$9x^2 + 4y^2 + 36x - 8y + 4 = 0$

a. When each equation is graphed, which conic section will be formed by each equation? Justify your reasoning for each based on the equation in its given form above.

14

b.	Find the area of the circle represented by the equation you identified as being a circle in part a).	Show
	your work, leaving your answer in terms of π .	

c.	Graph the hyperbola defined by the equation from part a) that you identified, indicating the characteristics below.						
		ļ		ļ			
	Intersection of the Asymptotes:						
	Slope of the Asymptotes:	8 -	7 -	6 -	5 -	1 _	3
	Coordinates of the Vertices:			·			••••

-1

D

1 1