Day \#57 Homework

Rewrite each of the following expressions as a single logarithm of the same base.

1. $5 \log x+2 \log x$	2. $\log _{3} 125-\log _{3} 5$	$3.2 \ln x+3 \ln y-5 \ln z$
4. $\log _{4} 60-\log _{4} 4+\log _{4} x$	$5 . \frac{1}{2} \ln x+2 \ln x$	$6 . \ln 4 x+2 \ln 2 x$

Expand each of the following expressions as the sum and/or difference of multiple logarithms.

7. $\log (x y z)$	$8 \cdot \ln \left(\frac{2 x}{y}\right)$
9. $\ln \left(6 x^{2} y\right)$	$10 \cdot \log _{2}\left(\frac{7}{x y^{2}}\right)$

$11 . \log _{5} \sqrt{x^{3} y}$	$12 \cdot \ln \left(\frac{3 x}{y^{2}}\right)$

Solve each of the following equations for x by rewriting each side of the equation as a single logarithm of the same base. Then, set the arguments equal to one another. If the equation has no solution, then specifically explain why.

13. $\log _{3}(x+2)-\log _{3} 2=\log _{3}(2 x-5)$	14. $\ln (2 x+5)-\ln 5=\ln (x-2)$
$15.2 \ln 3+\ln (x-4)=\ln 3 x$	$16 . \log (x-3)+\log (x)=\log 12-\log 3$

