Test \#8: Unit \#8 - Introduction to Trigonometric Functions

Name \qquad Date \qquad Period
$\left.\begin{array}{|l|c|l|}\hline \text { Multiple Choice } & \times(9 / 7) & \\ \hline \text { Free Response } & \times 1 & \\ \hline\end{array} \begin{array}{c}\text { Total Score } \\ \text { out of } 36\end{array}\right)$

MULTIPLE CHOICE - Calculator Permitted

1. If $a=18$ and the measure of angle B is 25°, what is the value of c ?
A. 38.6
B. 16.3
C. 42.6
D. 19.9

E. 7.6
2. Which of the following angles is co-terminal with the angle $\theta=-\frac{7 \pi}{6}$.
A. $\frac{17 \pi}{6}$
B. $\frac{13 \pi}{6}$
C. $\frac{19 \pi}{6}$
D. $\frac{11 \pi}{6}$
E. $\frac{7 \pi}{6}$
3. Which of the following angles in degrees represents θ^{\prime}, the reference angle, for the angle, θ, which measures $\frac{3 \pi}{5}$ radians?
A. 108°
B. 18°
C. 48°
D. 72°
E. 128°
4. Which of the following angles would terminate in Quadrant II?
I. $\frac{13 \pi}{15}$
II. $\frac{7 \pi}{5}$
III. -3π
A. I and II only
B. I only
C. II only
D. I and III only
E. I, II, and III
5. Which of the following statements is/are true about the angle θ ?
I. If θ is such that $90^{\circ}<\theta<180^{\circ}$, then the reference angle would equal $\left(180^{\circ}-\theta\right)$.
II. If $\sin \theta>0$, then the angle θ can terminate in either Quadrant I or Quadrant IV.
III. If $\cos \theta<0$ and $\tan \theta<0$, then the angle θ will terminate in Quadrant II.
A. I only
B. II only
C. III only
D. I and III only
E. II and III only
6. Which of the following angles in radian measure is/are less than 225° ?
I. $\frac{3 \pi}{5}$
II. $\frac{7 \pi}{5}$
III. $\frac{5 \pi}{3}$
A. II only
B. I and II only
C. III only
D. II and III only
E. I only
7. Find two values of θ that satisfy $\sec \theta=2.5593$ on the interval $\left[0^{\circ}, 360^{\circ}\right)$.
A. 23° and 157°
B. 67° and 293°
C. 157° and 293°
D. 23° and 203°
E. 67° and 247°

FREE RESPONSE

Consider the equation $\csc \theta=-2.1464$. Answer the following questions if $0^{\circ} \leq \theta<360^{\circ}$.
a. Without solving the equation for θ, in which quadrant(s) could the angle θ possibly terminate? Justify your answer.
b. Using your calculator, find a negative value of θ. Show your work. Then, draw this negative angle in standard position.

c. On the interval $\left[0,360^{\circ}\right.$), what is/are the possible value(s) of θ. Make sure that you clearly show or explain the analysis that leads to your answer(s).
d. Suppose an angle α is such that $0<\alpha<\frac{\pi}{2}$. Explain why the values of $\sin \alpha$ and $\sin (\pi-\alpha)$ are equivalent. Explain your reasoning.

MULTIPLE CHOICE - Calculator NOT Permitted

8. Using the coordinates on the unit circle, find the exact value of $\tan \frac{2 \pi}{3}$?
A. $-\frac{\sqrt{3}}{3}$
B. $\sqrt{3}$
C. $\frac{\sqrt{3}}{3}$
D. $-\sqrt{3}$
E. -1
9. Using the coordinates on the unit circle, find the exact value of $\cot \left(-\frac{3 \pi}{2}\right)$?
A. 1
B. -1
C. 0
D. $\frac{\sqrt{2}}{2}$
E. undefined
10. Which of the following pairs of trigonometric ratios are equivalent.
I. $\tan \frac{\pi}{4} \quad \tan \frac{5 \pi}{4}$
II. $\tan \frac{\pi}{6} \tan \frac{4 \pi}{3}$
III. $\tan \frac{\pi}{6} \quad \tan \frac{7 \pi}{6}$
A. II and III only
B. I and III only
C. III only
D. I only
E. I, II, and III only
11. In an oblique triangle, $\triangle A B C$, it is known that $a=3, b=5$, and $c=7$. Which of the following equations could be solved to determine $m \angle A$?
A. $3^{2}=7^{2}+5^{2}-2(7)(5) \cos A$
B. $5^{2}=7^{2}+3^{2}-2(7)(3) \sin A$
C. $7^{2}=3^{2}+5^{2}-2(3)(5) \cos A$
D. $3^{2}=5^{2}+7^{2}-2(5)(7) \sin A$
E. $5^{2}=7^{2}+3^{2}-2(7)(3) \cos A$
12. Which of the following angles, θ, is/are such that $\sin \theta=-\frac{1}{2}$.
I. $\theta=\frac{7 \pi}{6}$
II. $\theta=\frac{\pi}{3}$
III. $\theta=-\frac{\pi}{6}$
A. I and III only
B. II only
C. II and III only
D. III only
E. I, II, and III
13. Which of the following statement(s) is/are true about the six trigonometric ratios?
I. In quadrant II, the sine and secant ratios are positive.
II. In quadrant IV, the tangent and cotangent ratios are negative.
III. Sine and Cosine are the only trigonometric ratios that are positive in quadrant I.
A. I and II only
B. I only
C. I and III only
D. II only
E. I, II, and III
14. An angle θ is such that $\sec \theta<0$ and $\tan \theta>0$, in which quadrant must the terminal side of θ lie?
A. Quadrant I
B. Quadrant II
C. Quadrant III
D. Quadrant IV
E. The terminal side of θ lies on an axis, not in a Quadrant.

FREE RESPONSE

The angle θ is such that $\csc \theta=2$ and the angle α is such that the terminal side of α passes through the point $(-2,7)$. Answer the following questions about θ and α.
a. In which quadrant(s) could angle θ terminate? Explain your reasoning.
b. If $\frac{\pi}{2} \leq \theta \leq \frac{3 \pi}{2}$, what is the value of θ ? Explain your reasoning.
c. Find one positive and one negative co-terminal angle with the angle θ ? Show your work.
d. Find the values of $\sec \alpha$ and $\tan \alpha$. Show your work, including the reference triangle for α.

