Pre-AP Calculus

Test #8: Unit #8 – Introduction to Trigonometric Functions

Name			Date	Period
	Multiple Choice	× (9/7)		
	Free Response	×1		
		Total Score out of 36		

MULTIPLE CHOICE – Calculator Permitted

- 1. If a = 18 and the measure of angle *B* is 25°, what is the value of *c*?
 - A. 38.6
 - B. 16.3
 - C. 42.6
 - D. 19.9
 - E. 7.6
- 2. Which of the following angles is co-terminal with the angle $\theta = -\frac{7\pi}{6}$.
 - A. $\frac{17\pi}{6}$ B. $\frac{13\pi}{6}$ C. $\frac{19\pi}{6}$
 - D. $\frac{11\pi}{6}$ E. $\frac{7\pi}{6}$
- 3. Which of the following angles in degrees represents θ ', the reference angle, for the angle, θ , which measures $\frac{3\pi}{5}$ radians?
 - A. 108°
 - B. 18°
 - C. 48°
 - D. 72°
 - E. 128°

TEST #8

4. Which of the following angles would terminate in Quadrant II?

I.
$$\frac{13\pi}{15}$$
 II. $\frac{7\pi}{5}$ III. -3π

A. I and II only	B. I only	C. II only
D. I and III only	E. I, II, and III	

5. Which of the following statements is/are true about the angle θ ?

I. If θ is such that $90^\circ < \theta < 180^\circ$, then the reference angle would equal $(180^\circ - \theta)$. II. If $\sin \theta > 0$, then the angle θ can terminate in either Quadrant I or Quadrant IV.

III. If $\cos \theta < 0$ and $\tan \theta < 0$, then the angle θ will terminate in Quadrant II.

A.	I only	B. II only	C. III only
D.	I and III only	E. II and III only	

6. Which of the following angles in radian measure is/are less than 225°?

I.	$\frac{3\pi}{5}$	II. $\frac{7\pi}{5}$	III. $\frac{5}{3}$	$\frac{\pi}{3}$

A.	II only	B. I and II only	C. III only
D.	II and III only	E. I only	

7. Find two values of θ that satisfy sec $\theta = 2.5593$ on the interval [0°, 360°).

- A. 23° and 157°
- B. 67° and 293°
- C. 157° and 293°
- D. 23° and 203°
- E. 67° and 247°

FREE RESPONSE

Consider the equation csc $\theta = -2.1464$. Answer the following questions if $0^{\circ} \le \theta < 360^{\circ}$.

a.	Without solving the equation for θ , in which quadrant(s) could the angle θ possibly terminate?	Justify
	your answer.	

b. Using your calculator, find a negative value of θ . Show your work. Then, draw this negative angle in standard position.

c. On the interval [0, 360°), what is/are the possible value(s) of θ . Make sure that you clearly show or explain the analysis that leads to your answer(s).

d. Suppose an angle α is such that $0 < \alpha < \frac{\pi}{2}$. Explain why the values of sin α and sin $(\pi - \alpha)$ are equivalent. Explain your reasoning.

Pre-AP Calculus TEST #8: Unit #8 – Introduction to Trigonometric Functions

10. Which of the following pairs of trigonometric ratios are equivalent.

I. $\tan \frac{\pi}{4}$ $\tan \frac{5\pi}{4}$ II. $\tan \frac{\pi}{6}$ $\tan \frac{4\pi}{3}$ III. $\tan \frac{\pi}{6}$ $\tan \frac{7\pi}{6}$

- A. II and III only
- B. I and III only
- C. III only
- D. I only
- E. I, II, and III only

- 11. In an oblique triangle, $\triangle ABC$, it is known that a = 3, b = 5, and c = 7. Which of the following equations could be solved to determine $m \angle A$?
 - A. $3^2 = 7^2 + 5^2 2(7)(5)\cos A$ B. $5^2 = 7^2 + 3^2 - 2(7)(3)\sin A$ C. $7^2 = 3^2 + 5^2 - 2(3)(5)\cos A$ D. $3^2 = 5^2 + 7^2 - 2(5)(7)\sin A$ E. $5^2 = 7^2 + 3^2 - 2(7)(3)\cos A$
- 12. Which of the following angles, θ , is/are such that $\sin \theta = -\frac{1}{2}$.

I.
$$\theta = \frac{7\pi}{6}$$
 II. $\theta = \frac{\pi}{3}$ III. $\theta = -\frac{\pi}{6}$

- A. I and III only
- B. II only
- C. II and III only
- D. III only
- E. I, II, and III

13. Which of the following statement(s) is/are true about the six trigonometric ratios?

I. In quadrant II, the sine and secant ratios are positive.

II. In quadrant IV, the tangent and cotangent ratios are negative.

- III. Sine and Cosine are the only trigonometric ratios that are positive in quadrant I.
- A. I and II only
- B. I only
- C. I and III only
- D. II only
- E. I, II, and III

14. An angle θ is such that sec $\theta < 0$ and tan $\theta > 0$, in which quadrant must the terminal side of θ lie?

- A. Quadrant I
- B. Quadrant II
- C. Quadrant III
- D. Quadrant IV
- E. The terminal side of θ lies on an axis, not in a Quadrant.

FREE RESPONSE

The angle θ is such that $\csc \theta = 2$ and the angle α is such that the terminal side of α passes through the point (-2, 7). Answer the following questions about θ and α .

a. In which quadrant(s) could angle θ terminate? Explain your reasoning.

b. If $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, what is the value of θ ? Explain your reasoning.

c. Find one positive and one negative co-terminal angle with the angle θ ? Show your work.

d. Find the values of sec α and tan α . Show your work, including the reference triangle for α .