Day \#77 Homework

For problems 1 and 2, an angle θ is described. Draw and label the reference triangle for each angle and then find the exact values of $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$.

1. $\cos \theta=-\frac{5}{13}$ and θ terminates in Quadrant III	2. $\sin \theta=-\frac{3}{4}$ and θ terminates in Quadrant IV

3. Verify that the equation below is a trigonometric identity.

$$
\frac{\sin 2 \theta}{1-\cos 2 \theta}=\cot \theta
$$

Verify that the equations below are trigonometric identities.
4. $\cot \theta+\tan \theta=2 \csc 2 \theta$
5. $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$

Verify that each of the following equations is an identity.
6. $\frac{\cos (a-b)}{\cos a \sin b}=\tan a+\cot b$

$$
\text { 7. } \frac{\sin (a+b)}{\cos a \cos b}=\tan a+\tan b
$$

8. $(\sin \theta+\cos \theta)^{2}=\sin 2 \theta+1$	$9 . \tan \theta \sin 2 \theta=2-2 \cos ^{2} \theta$
$10 . \frac{\sin 2 \theta}{\sin \theta}=\frac{2}{\sec \theta}$	
$12 . \frac{\cos \theta}{\sin \theta \cot \theta}=\sin ^{2} \theta+\cos ^{2} \theta$	

