Characteristics of Quadratic Functions (pp. 1 of 5)

Here are the two forms in which quadratic functions can be written:

Vertex Form:	$y = a(x-h)^2 + k$
General (Standard) Form:	$y = ax^2 + bx + c$

In these equations, *a*, *b*, and *c*, *h*, and *k* represent constants, but *a* cannot equal zero.

• Why must we say $a \neq 0$?

Comparison of Characteristics

Characteristic	Standard Form $y = ax^2 + bx + c$	Vertex Form $y = a(x-h)^2 + k$	
vertex	$(\frac{-b}{2a}, ?)$ Plug $x = \frac{-b}{2a}$ into the equation to find y	(<i>h</i> , <i>k</i>)	The two forms of quadratic equations provide information
axis of symmetry	$x = \frac{-b}{2a}$	<i>x</i> = <i>h</i>	about the function's graph in different ways.
<i>y</i> -intercept	(0, <i>c</i>)	(0, ?) Plug $x = 0$ into the equation to find y	
point symmetric to <i>y</i> -intercept	The <i>y</i> -intercept (and other points) can be reflected across the axis of symmetry to find other points on the graph of the function.		However, some things are the same,
<i>x</i> -intercept(s)	These points can be read from the graph or table. When in doubt, use the calculator's CALC 2: zero command (2 nd , TRACE).		regardless of which form you use.

Find each characteristic for the functions described.

Characteristic	$y = x^2 - 2x - 3$	$y = (x-1)^2 - 4$
vertex		
axis of symmetry		
y-intercept		
symmetric point to y-intercept		
x-intercept(s)		

Compare with the results from the handout: Investigating Characteristics of Quadratic Functions.

Characteristics of Quadratic Functions (pp. 2 of 5)

Sample Problems

Find the characteristic parts of each function. Use this information to produce the graph.

A) $y = -x^2 + 6x - 2$

y n on	
Characteristic	Value
Vertex	
Axis of Symmetry	
y-intercept	
Point symmetric to y-intercept	
x-intercept(s)	

B)

 $f(x) = 2(x+1)^2 + 3$

Characteristic	Value
Vertex	
Axis of	
Symmetry	
y-intercept	
Point	
symmetric to	
y-intercept	
<i>x</i> -intercept(s)	

X	У

Characteristics of Quadratic Functions (pp. 3 of 5)

Practice Problems

For problems #1-4 make a table of values, graph the function, find the vertex, determine if the vertex is a maximum or minimum, write the equation of the line for the axis of symmetry, find the y-intercept and symmetric point, and give the x-intercepts.

1) $f(x) = x^2 + 4x - 5$

Characteristic	Value
Vertex	
Axis of Symmetry	
y-intercept	
Point symmetric to y-intercept	
x-intercept(s)	

2)

$y = (x - 2)^2$	
Characteristic	Value
Vertex	
Axis of Symmetry	
y-intercept	
Point	
symmetric to	
y-intercept	
<i>x</i> -intercept(s)	

X	У

Characteristics of Quadratic Functions (pp. 4 of 5)

3) $y = -x^2 - 4x + 12$

Characteristic	Value
Vertex	
Axis of Symmetry	
y-intercept	
Point symmetric to <i>y</i> -intercept	
x-intercept(s)	

4)

 $y = 2(x+1)^2 + 1$ CharacteristicValueVertexAxis of
Symmetryy-intercept

Point symmetric to

y-intercept

x-intercept(s)

Characteristics of Quadratic Functions (pp. 5 of 5)

5) True Value Fabricators produces circular iron cast disks to be used as endplates for pipes. The cost of the disks is a quadratic function of the diameter. The cost of some disks is given at right. 1 inch diameter \$12.00 2 inch diameter \$18.00 3 inch diameter \$28.00 4 inch diameter \$42.00 5 inch diameter \$60.00

- A) In this situation, what are the independent and dependent variables?
- B) Sketch a scatterplot of the data. Label the axes. C) Enter the data into the graphing calculator. Use transformations of $y = x^2$ to determine a representative function for the data set in $y = a(x - h)^2 + k$ form.
- D) What would be a reasonable domain and range for this function?
- E) Find each of the characteristics and explain their meaning in the problem situation.

Characteristic	Value(s)	Meaning in Problem Situation
vertex		
axis of symmetry		
y-intercept		
x-intercept(s)		

- F) What would be the cost of a disk with a diameter of 12 inches?
- G) If the cost of the disk is \$522, what would be the diameter of the disk?