Let the random variable X represent the number of telephone lines in use by the technical support center of a software manufacturer at noon each day. The probability distribution of X is shown in the table below.

x	0	1	2	3	4	5
$p(x)$	0.35	0.20	0.15	0.15	0.10	0.05

(a) Calculate the expected value (the mean) of X.

$$
\begin{aligned}
& 0.35+1 . .20+2.15+3.15+4.1+5: 05=1.6 \\
& \text { The expected of Tines in use at nom is 1.6 }
\end{aligned}
$$

(b) Using past records, the staff at the technical support center randomly selected 20 days and found that an average of 1.25 telephone lines were in use at noon on those days. The staff proposes to select another random sample of 1,000 days and compute the average number of telephone lines that were in use at noon on those days. How do you expect the average from this new sample to compare to that of the first sample? Justify your response.

$$
\begin{aligned}
& \text { larger samples are mont liking to be closer to } \\
& \text { the expected value so I mould expect } \\
& \text { the larger sample to ba e lose to } 1.6 \text { than } \\
& 1.25 \text { was. }
\end{aligned}
$$

(c) The median of a random variable is defined as any value x such that $P(X \leq x) \geq 0.5$ and $P(X \geq x) \geq 0.5$.

For the probability distribution shown in the table above, determine the median of X,

(d) In a sentence or two, comment on the relationship between the mean and the median relative to the shape of this distribution.

Because the distribution is skewed right I
would expect the mean to be higher than th
midian due to the median king mom robust
and less effected by skew or outliers

- And it was.

The manager of a large company that sells pet supplies online wants to increase sales by encouraging repeat purchases. The manager believes that if past customers are offered $\$ 10$ off their next purchase, more than 40 percent of them will place an order. To investigate the belief, 90 customers who placed an order in the past year are selected at random. Each of the selected customers is sent an e-mail with a coupon for $\$ 10$ off the next purchase if the order is placed within 30 days. Of those who receive the coupon, 38 place an order
(a) Is there convincing statistical evidence, at the significance level of $\alpha=0.05$, that the manager's
(b) Based on your conclusion from part (a), which of the two errors, Type I or Type II, could have been made? Interpret the consequence of the error in context.

Type II error cunld have been made.
This means we could haws not rejectected a

$$
\begin{aligned}
& \text { flawed null hypothesis. This means we do } \\
& \text { not implement the new coupon system, but } \\
& \text { it wend have increased use, "f store and }
\end{aligned}
$$

the storm loses many.

$$
\begin{aligned}
& \text { belief is correct? Complete the appropriate inference procedure to support your answer. } \\
& \text { Conditions } \\
& \text { Randon-Says it } \\
& \text { Ind - iss theald\% of hosp } \\
& \text { Numb - } 90\binom{38}{40}>10 \\
& 90\left(\frac{9 w^{38}}{68}\right)>10 \\
& \text { Passes ole cunditione } \\
& H_{0}: p=, 4 \\
& \text { Ha: } p^{7.4} \\
& \frac{D-E}{S E}=\frac{\frac{38-.40}{99}}{\sqrt{\frac{P(1-p)}{r}}}=.427 \\
& \alpha=.05 \quad \text { P-value }=.335 \\
& \text { We do Not reject our null that } \\
& \text { offering a gift ard will inepeas } \\
& \text { tum estamers thous: } 4
\end{aligned}
$$

A research center conducted a national survey about teenage behavior. Teens were asked whether they bad consumed a soft drink in the past week. The following table shows the counts for three independent random samples from major cities.

	Baltimore	Detroit	San Diego	Total
Yes	727	1.232	1.482	3.441
No	177	431	798	1,406
Total	904	1.663	2.280	4,847

(a) Suppose one teen is randomly selected from each city's sample. A researcher claims that the

Supp likelihood of selecting a teen from Baltimore who consumed a sort ore cone of the cities who consumed a soft drink in the past likelihood of selecting a teen from either one of the other cites who consumed a soft drink. Is the researcher's week because Baltimore

$$
\begin{aligned}
& \begin{array}{l}
\text { that comet? Explain your answer. } \text { Tejearehos elsie is lacuefect, bedaub the }
\end{array}
\end{aligned}
$$

(b) Consider the values in the table.
(i) Construct a segmented bar chart of relative frequencies based on the information in the table.

(ii) Which city had the smallest proportion of teens who consumed a soft drink in the previous week?

Determine the value of the proportion.
SAN DIEGO lad the smallest proportion who had a soft thetink previous beck at ito S.
(c) Consider the inference procedure that is appropriate for investigating whether there is a difference
among the three cities in the proportion of all teens who consumed a soft drink in the past week.
(i) Identify the appropriate inference procedure.

$$
x^{2} \text { test }
$$

(ii) Identify the hypotheses of the test.

$$
\begin{aligned}
& \text { Hs The city chosen will have no effect in proportion who } \\
& \text { Wad a soft drink in the prusisas week } \\
& \text { Ha: The city chosen will have an effect on proportion } \\
& \text { who had o sift drink in the previous week }
\end{aligned}
$$

1. The length of stay in a hospital after receiving a particular treatment is of interest to the patient, the hospital, and insurance providers. Of particular interest are unusually short or long lengths of stay. A random sample of 50 patients who received the treatment was selected, and the length of stay, in number of days, was recorded for each patient. The results are summarized in the following table and are shown in the dotplot.

Length of stay (days)	5	6	7	8	9	12	21
Number of patients	4	13	14	11	6	1	1

(a) Determine the five-number summary of the distribution of length of stay.
$\min =5$
$Q 1=6$
$M E D=7$
$23=8$
$\max =21$
(b) Consider two rules for identifying outliers, method A and method B. Let method A represent the $1.5 \times \mathrm{IQR}$ rule, and let method B represent the 2 standard deviations rule.
(i) Using method A , determine any data points that are potential outliers in the distribution of length of

$$
\begin{aligned}
& \text { stay. Justify your answer I, QR }=8-6: 2 \quad 1.5 \times I A R=3 \text { fences at } 3+11 \\
& \text { anything outside sill ane potential atilius sea } 12+21 \text { am outliers }
\end{aligned}
$$

(ii) The mean length of stay for the sample is 7.42 days with a standard deviation of 2.37 days. Using method B , determine any data points that are potential outliers in the distribution of length of stay. Justify

$$
\begin{aligned}
& \text { only } 21 \text { is pots tide } 20 \text { then is outliers in the distribution of length of stay. Justify } \\
& \text { y a ty } \\
& \text { antlits. }
\end{aligned}
$$

(c) Explain why method A might identify more data points as potential outliers than method B for a distribution that is strongly skewed to the right.
than the median
The mean is less robust rand therefor mom

$$
\text { effected bor } \text { bitiels. }
$$

The I.aR. method is centered on the median so it is less effected by the skew while 2 o rale is centered on the man, making it $m>m$ suseptable being pulled ot by the skew.

