A population exhibits the characteristics described below.

Age Group (in years)	Birth Rate	Survival Rate
$0-5$	0	0.5
$5-10$	0.7	0.8
$10-15$	1.2	0.9
$15-20$	0.8	0.9
$20-25$	0.7	0.7
$25-30$	0.2	0.4
$30-35$	0	

The initial population distribution is given below.

Age Group	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Original Count	30	30	26	28	32	15	10

1.) Give the survival rate for the 30-35 year-old group.
2.) Give the birth rate for the 10-15 year-old group, the 20-25 group, and the 30-35 group.
3.) Give the survival rate for the newborns, the 5-10 group, and the 25-30 group.
4.) Construct the Leslie Matrix (L) for this animal population.
5.) Construct the Initial Population matrix (IP).
6.) Construct the "ones" matrix (Ones).
7.) How many cycles would there be in 5 years? 10 years? 25 years?
8.) Using matrix multiplication, how would you find the age distribution after 25 years?
9.) Give the population distribution after 25 years.
10.) Using matrix multiplication, how would you find the total population after 25 years?
11.) Give the total population after 25 years.
12.) Determine the Long-Term Growth Rate for this population to the nearest percent.
13.) If the maximum sustainable population in its native habitat is 12,000 animals, when will this population be reached? (in cycles) \qquad (in years) \qquad
A population exhibits the characteristics described below.

Age Group (days)	Birth Rate	Survival Rate
$0-3$	0.2	0.7
$3-6$	0.6	0.8
$6-9$	1.2	0.9
$9-12$	0.8	

The initial population distribution is given below.

Age Group	$0-3$	$3-6$	$6-9$	$9-12$
Original Count	10	20	30	20

14.) Give the birth rate for the 3-6 day-old group.
15.) Give the survival rate for the newborns.
16.) Give the survival rate for the 9-12 day-old group.
17.) Construct the Leslie Matrix (L) for this animal population. Give $\mathrm{L}_{13}, \mathrm{~L}_{21}, \mathrm{~L}_{34}, \mathrm{~L}_{41}$
18.) Construct the Initial Population matrix (IP). Give $\mathrm{IP}_{11}, \mathrm{IP}_{12}, \mathrm{IP}_{31}, \mathrm{IP}_{13}$
19.) How many cycles would there be in 12 days? 15 days? 30 days?
20.) Give the population distribution after 6 days.
21.) How many newborns are there after 12 days?
22.) What is the total population after 30 days?
23.) Determine the Long-Term Growth Rate for this population to the nearest percent.
24.) How many days will it take for the population to exceed 20,000?

