Complete the table below based on the observations that you have seen in the previous examples.

Equation with Transformations	Describe the shift(s) and/or reflections that the graph of $f(x)$ undergoes	Describe what would be done to the x and/or y coordinates to the graph of $f(x)$
y = f(x) + c		
y = f(x) - c		
y = f(x+c)		
y = f(x - c)		
y = -f(x)		
y = f(-x)		
$y = \left f(x) \right $		
$y = a \cdot f(x)$		

In Algebra II, you learned how to graph several other functions. Graph the basic functions mentioned below.

I. Basic Quadratic Function: $f(x) = x^2$	II. Basic Absolute Value Function: $f(x) = x $

Describe how the graphs of each of the following functions will be different from the basic function. Then, graph the given functions

$g(x) = (x+2)^2 - 3$	h(x) = - x+1 + 4
	┃
$f(\mathbf{r}) = \sqrt[3]{-\mathbf{r}+2} - 3$	$p(r) = (-r+4)^3 + 1$
$f(x) = \sqrt[3]{-x+2} - 3$	$p(x) = (-x+4)^3 + 1$
$f(x) = \sqrt[3]{-x+2} - 3$	$p(x) = (-x+4)^3 + 1$
$f(x) = \sqrt[3]{-x+2} - 3$	$p(x) = (-x+4)^3 + 1$
	$p(x) = (-x+4)^3 + 1$
	iiiiiiiiii

The table below shows ordered pairs on the graph of a function, f(x), that consists of line segments connecting the points in the table. Use the table to create a table of values for each function below that is a transformation of the graph of f(x).

x	-3	-1	1	3	5
f(x)	5	1	-4	1	2

1.
$$g(x) = -f(x) + 2$$
 State the shifts and/or reflections that $f(x)$ undergoes to obtain the graph of $g(x)$, stating what changes are made to which coordinates of $f(x)$ to obtain the coordinates of point for $g(x)$.

Coordinates on	x coordinate	y coordinate	Ordered Pairs
f(x)	on $g(x)$	on $g(x)$	on $g(x)$
(-3, 5)			
(-1, 1)			
(1, -4)			
(3, 1)			
(5, 2)			

2.
$$h(x) = 3f(x+2) - 3$$

State the shifts and/or reflections that f(x) undergoes to obtain the graph of h(x), stating what changes are made to which coordinates of f(x) to obtain the coordinates of point for h(x).

Coordinates on	x coordinate	<i>y</i> coordinate	Ordered Pairs
f(x)	on $h(x)$	on $h(x)$	on $h(x)$
(-3, 5)			
(-1, 1)			
(1, -4)			
(3, 1)			
(5, 2)			

..و... 103. q(x) = f(-x + 3) - 2

State the shifts and/or reflections that f(x) undergoes to obtain the graph of q(x), stating what changes are made to which coordinates of f(x) to obtain the coordinates of point for q(x).

Coordinates on	x coordinate	y coordinate	Ordered Pairs
f(x)	on $q(x)$	on $q(x)$	on $q(x)$
(-3, 5)			
(-1, 1)			
(1, -4)			
(3, 1)			
(5, 2)			

Graphs of Piece-wise Defined Functions:

Graph the following piecewise defined functions on the provided grids.

The table below shows ordered pairs on the graph of a function, f(x), that consists of line segments connecting the points in the table. Use the table to create a table of values for each function below that is a transformation of the graph of f(x).

x	-3	-1	1	3	5
f(x)	5	1	-4	1	2

1.
$$g(x) = -f(x) + 2$$

State the shifts and/or reflections that f(x) undergoes to obtain the graph of g(x), stating what changes are made to which coordinates of f(x) to obtain the coordinates of point for g(x).

Coordinates on	x coordinate	y coordinate	Ordered Pairs
f(x)	on $g(x)$	on $g(x)$	on $g(x)$
(-3, 5)	-3	-5+2=-3	(-3,-3)
(-1, 1)	W ERREN A	-1+2=1	(-1,1)
(1, -4)	١	4+2=6	(1,6)
(3, 1)	3	-1+2=1	(3,1)
(5, 2)	5	-2+2=0	(5,0)

$$(x, -\gamma + 2)$$

2. h(x) = 3f(x + 2) - 3State the shifts and/or reflections that f(x) undergoes to obtain the graph of h(x), stating what changes are made to which coordinates of f(x) to obtain the coordinates of point for h(x).

Overtical dilation by a factor of 3
ⓐ x+2=0 x=-2 shift left 2
shift left 2
3 Shift down 3
(x-2, 3y-3)

Coordinates on $f(x)$	$\begin{array}{c} x \text{ coordinate} \\ \text{ on } h(x) \end{array}$	y coordinate on $h(x)$	Ordered Pairs on $h(x)$
(-3, 5)	-3-2=-5	3(5)-3=12	(-5,12)
(-1, 1)	-1-2=-3	3(1)-3=0	(-3,0)
(1, -4)	1-2=-1	3(-4)-3=-15	(-1, -15)
(3, 1)	3-2=1	3(1)-3=0	(1,0)
(5, 2)	5-2=3	3(2)-3 = 3	(3,3)

3. q(x) = f(-x+3) - 2

State the shifts and/or reflections that f(x) undergoes to obtain the graph of q(x), stating what changes are made to which coordinates of f(x) to obtain the coordinates of point for q(x).

ORoflects over y-axis
2) - 2+3=0 Shifts right 3
$\chi = 3$
3 Shifts down 2
(-x +3, y-2)

-			
Coordinates on	x coordinate	y coordinate	Ordered Pairs
f(x)	on $q(x)$	on $q(x)$	on $q(x)$
(-3, 5)	3+3=6	5-2-3	(6,3)
(-1, 1)	1+3=4	1-2=-1	(4, -1)
(1, -4)	-1+3=2	-4-2=-6	(2, -6)
(3, 1)	-3+3=0	1-2 = -1	(0, -1)
(5, 2)	-5+3 = -2	2-2=0	(-2,0)

Graphs of Piece-wise Defined Functions:

Graph the following piecewise defined functions on the provided grids.

