Z-Scores, Proportions, and Percentiles

1. A normal distribution of scores has a standard deviation of 10 . Find the z -scores corresponding to each of the following values:
a) A score that is 20 points above the mean.
b) A score that is 10 points below the mean.
c) A score that is 15 points above the mean
d) A score that is 30 points below the mean.
2. For each z-score below, find the percentile (percent of individuals scoring at or below):
a) $\mathrm{z}=-0.47$
b) $\mathrm{z}=2.24$
3. For each z -score below, find the proportion of cases falling above the z :
a) $\mathrm{z}=0.24$
b) $\mathrm{z}=-2.07$
4. For each z-score below, find the area between the mean and the z-score:
a) $\mathrm{z}=1.17$
b) $\mathrm{z}=-1.37$
5. A patient recently diagnosed with Alzheimer's disease takes a cognitive abilities test and scores a 45 . The mean on this test is 52 and the standard deviation is 5 . What is the patient's percentile?
6. A fifth grader takes a standardized achievement test $($ mean $=125$, standard deviation $=$ $15)$ and scores a 148 . What is the child's percentile?
7. Pat and Chris both took a spatial abilities test (mean $=80$, std. dev. $=8$). Pat scores a 76 and Chris scored a 94 . What proportion of individuals would score between Pat and Chris?
8. The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6 . Assuming these raw scores form a normal distribution:
a) What proportion of raw scores are between 28 and 38 ?
b) What proportion of raw scores are between 41 and 44 ?
c) What number represents the $65^{\text {th }}$ percentile (what number separates the lower 65% of the distribution)?
d) What number represents the $90^{\text {th }}$ percentile?
9. Scores on the SAT form a normal distribution with $\mu=500$ and $\sigma=100$.
a) What is the minimum score necessary to be in the top 15% of the SAT distribution?
b) Find the range of values that defines the middle 80% of the distribution of SAT scores.
10. For a normal distribution, find the z-score that separates the distribution as follows:
a) Separate the highest 30% from the rest of the distribution.
b) Separate the lowest 40% from the rest of the distribution.
c) Separate the highest 75% from the rest of the distribution.
